Christine Gan selected as finalist for 2021 Water’s Next Award

DATE POSTED: May 25, 2021



Christine Gan, our Wastewater Engineer (EIT), has been selected as a finalist in the 2012 Water’s Next Awards for the category of Young Professional Leader. 

We’re enormously proud that Christine is being recognized for the incredible work that she’s doing for Bishop Water and within the water industry. Christine is a key member of our BioCord Reactor team and has been instrumental in bringing this simple, low-energy wastewater treatment technology to market. 

Not only has she worked behind the scenes to refine system components and configurations, Christine has also led several research projects and pilot studies that have greatly expanded our understanding of energy-efficient aeration and fluid dynamics in a BioCord system. As you might expect, her efforts culminated in a full-scale installation of BioCord Reactors to upgrade the lagoons at the Limoges WWTF

More recently, she’s turned her attention to develop fully-integrated wastewater treatment systems that leverage the simplicity, energy efficiency and affordability of our other core products offerings, the Bishop Solids Management Solution and ClariPhos™ Rare Earth Coagulant for phosphorus removal. 

Christine is also active in many water-related organizations and is a dedicated volunteer working with students and community groups to share her knowledge in wastewater management and water conservation. 

We hope that you’ll join us in supporting Christine on June 10, 2021 when Water Canada announces the winners of the Water’s Next Awards at the Canadian Water Summit.

Register for the Water’s Next Awards and the Canadian Water Summit. 

Learn more about our simple, low-energy wastewater treatment solutions. 

Case study: Lagoon sludge removal provides affordable solution for algae and H2S issues

DATE POSTED:


  • Lagoon sludge removal and dewatering
  • Bishop Solids Management Solution 
  • O’Leary Wastewater Treatment Facility, O’Leary, PEI, Canada

The challenge: Algae blooms and corrosive gases caused by sludge accumulation

Sludge accumulation was thought to be causing significant operational challenges for the O’Leary Wastewater Treatment Facility (WWTF), a two-cell lagoon system on the west side of Prince Edward
Island, commissioned in the 1990s. 

O’Leary’s treatment lagoon serves about 800 residents, several businesses and, for a period of time, was also receiving wastewater from a potato processing plant. 

Sludge maps are an important step in planning and executing lagoon cleanouts. WSP’s map of the O’Leary lagoon revealed significant accumulation.

The lagoons were experiencing serious blooms of blue-green algae during the summer months and exceedances of TSS, BOD and coliform bacteria in treated effluent. Hydrogen sulfide (H2S) gas, which was also attributed to the algae and sludge, was building up in a below-grade chamber that housed the plant’s UV disinfection system.   

Not only was the gas accumulation a hazard for operators, but it caused corrosion that damaged ductile iron pipes, an electrical panel and the plant’s UV system. 

Operators also saw “islands of sludge” periodically rise out of the water before bursting and releasing clouds of methane and H2S gases.

The solution: Dredging and passive dewatering meets regulatory and budget requirements 

In 2019, the Town of O’Leary began working with engineering consultants WSP to repair the damage to the UV system, alleviate the algae blooms and end the release of corrosive gases from the lagoon. 

WSP began with a comprehensive sludge survey, obtaining sludge depth measurements from several locations in each of the lagoons. 

The results revealed that despite their large area, the lagoons are relatively shallow, with a maximum depth of only 5 ft (1.5 m). Each cell had accumulated about 1.5 to 2 ft (0.45 to 0.6 m) of sludge, which significantly reduced their ability to remove nutrients and settle out solids. 

The team evaluated several options and awarded the project to AJL Contracting and Bishop Water Technologies to desludge the lagoon and dewater removed solids with the Bishop Solids Management Solution. This simple, low-energy system uses Geotube® containers, optimal polymers and gravity to collect, dewater and consolidate dredged sludge. 

Dredging the lagoon enabled it to remain in operation while sludge removal occurred and also complied with a provincial regulation that prohibits tracked heavy equipment from operating in lagoons with clay liners. 

The project began in the summer of 2020, with the construction of a lined laydown area designed to accommodate a layer of three Geotube containers 85 ft in circumference and 114 ft in length (26 x 34.7m) and a second layer of two 95 x 100 ft (29 x 30.5m) containers that would be laid on top. This stacking arrangement minimizes the footprint and cost of the dewatering cell. 

The results: No algae, no gases, no rush to haul away solids

Dredged sludge was first pumped through a 0.6 inch (15 mm) screen to remove debris, trash and improve the quality of the final dewatered biosolids for land application. 

From the screening plant, the sludge was pumped to the Geotube containers. Bishop Water’s VEPAS™ (Venturi Emulsion Polymer Activation System) added and mixed polymer directly in the feed line, eliminating the need for polymer aging and mix tanks. 

The Bishop Solids Management Solution accepts and dewaters solids as quickly as the dredge can pump, dramatically outperforming centrifuges or belt presses for speed and energy efficiency. Low-TSS filtrate released from the microscopic pores of the Geotube container was directed by gravity to cell two. 

Technicians continually monitored polymer performance and dose rates to ensure optimal dewatering and retention of contaminants. Daily sampling showed that the system was achieving about 20% solids
concentration after just a few hours of dewatering.  

The Bishop Solids Management Solution used a two-layer,  stacked arrangement of Geotube dewatering containers to  minimize the footprint and cost of the dewatering cell.

Desludging of cell one was completed in about four weeks. Two more weeks of sludge removal filled the first layer of Geotube containers to capacity and technicians stacked a new container on top of the others. 

One more week of dredging and pumping completed the project.  The total volume of wet sludge removed was 26,480 m3, which corresponds to 872 bone dry tonnes. 

A major advantage of Geotube containment is that the solids can remain at the site for months or even years, allowing ample time for the town to find a suitable location for land application and arrange funding for hauling. Throughout that time, passive dewatering will continue further consolidating the material. 

A seasonal freeze-thaw cycle also significantly improves dewatering, potentially elevating the solids concentration of the dredged material to 40% or more in this case. 

Since completing the project, operators report that there have been no issues with gas accumulation in the below-grade chamber or blue-green algae growth in the lagoons. 

Learn more about the Bishop Solids Management Solution for lagoon sludge cleanouts. 

Download the case study.

Contact us to discuss your sludge removal and solids management challenges. 

Back to Top

Bishop Water’s global growth featured in Ottawa Business Journal

DATE POSTED: January 27, 2021


There’s a growing global need for simple, low-energy solids management and nutrient removal solutions. The Ottawa Business Journal recently interviewed Bishop Water CEO Kevin Bossy to learn how BioCord Reactors and the broader solutions portfolio provide the right mix of simplicity, affordability and performance to expand quickly into international markets.

Read the full article in the Winter issue of the Ottawa Busines Journal; Ottawa’s tech firms to watch.

Learn more about our simple, low-energy solutions for nutrient removal and solids management. 

Back to Top

Geotube shoreline system protects historic New Jersey lighthouse

DATE POSTED:


Over the past several decades, the shoreline around the East Point Lighthouse has receded continually, posing a major threat to the more-than-170-year-old landmark. Despite the creation of a dune system designed to protect against erosion and rising sea levels, the ocean is nearly at the building’s doorstep. In March of 2018, a severe storm severely compromised the dune system forcing municipal work crews to hastily pile sandbags along the shoreline in front of the lighthouse. 

But a better solution with more longevity was needed. Later that year, the New Jersey Department of Environmental Protection began a project to install 600 feet of Tencate Geotube™ to reduce the risk of further erosion and help restore a natural, living shoreline.

Eight Geotube containers were laid end to end to cover the distance. Each was filled with sand and set on top of a scour apron held in place with anchor tubes. The scour apron is a critical part of the system, extending several feet beyond the Geotube to prevent wave action from compromising the shoreline under the structure. The lee side of the structure is further protected with Tencate sand filled mattresses, which are designed to remain exposed, endure abrasion and UV light, and also trap and hold soil on the surface to help establish a covering layer of vegetation. 

Unlike conventional sandbags, a Geotube container is massive. In this case, a sand-filled Geotube is five feet high, 10 feet wide and weighs more than 3,000 pounds. Once the Geotube is set in place, it’s virtually immovable and can withstand waves, wind, abrasion and impact. 

The new Geotube shoreline system was covered with sand to help create a coastal dune habitat, protect the inland wetlands from erosion and prevent the ocean from advancing further towards the historic lighthouse. 

Learn more about Geotube containers for shoreline protection.

Contact us  to discuss Geotube containers for your shoreline protection project. 

Back to Top

Ammonia discharge limits are tightening up for Canadian mines. Be ready with a BioCord system

DATE POSTED:


By June 1, 2021 metal and diamond mines in Canada will need to comply with a new lower discharge limit for unionized ammonia. Over 100 mines will be affected by this revision to the Metal and Diamond Mining Effluent Regulations (MDMER), which sets a federal effluent limit of 0.5 mg NH3/L. 

To achieve this new regulation, changes may be needed to a mine site’s wastewater treatment system. But the new ammonia target can likely be reached without the need for complex or costly technology upgrades. Many mine sites use simple lagoon systems for wastewater treatment—in part due to their ease of use and low operating costs—and there are upgrade options that can maintain this simplicity and affordability while also improving ammonia removal. 

More nitrifying bacteria = better total ammonia removal

A simple, fixed-film biological treatment system such as Bishop BioCord™ Reactors can dramatically improve total ammonia removal, without significant changes to the way a lagoon is operated. That’s because a BioCord system is designed to enhance the existing lagoon process rather than add another step or sidestream process to the plant. 

Unlike moving-bed or submerged-bed biofilm systems, which require additional tanks or cells, BioCord Reactors can be installed directly into the treatment lagoon to provide a massive surface area on which preferred, naturally occurring bacteria can grow. It’s like a condominium for bacteria; made from densely arranged loops of polymer fibers that are suspended from free-standing frames. This enables BioCord to establish a robust population of nitrifying bacteria that is many times greater than what can be maintained in an ordinary activated sludge lagoon. 

BioCord isn’t limited to upgrades only. This modular system can also form the foundation for new wastewater treatment plants that are designed as lagoons, tanks or even temporary containers. 

Effluent BioCord concentrations running in SBR (sequencing batch reactor) and CSTR (continuous stirred tank reactor) mode.

High oxygen transfer is critical

Each frame is also equipped with a micro-bubble aeration system powered by a low-energy compressor. This design enables the system to achieve high oxygen transfer to the biofilm for a fraction of the capital and operating costs of a typical blower-powered lagoon aeration system.  Oxygen is a critical, and often limiting, parameter for nitrifying bacteria to proliferate, so having high oxygen transfer at a low energy cost is a tremendous advantage. 

Once operational, a BioCord system acclimatizes and adapts to the range of pH, temperature and contaminants that it may experience in the mine’s wastewater lagoon, including high levels of ammonia, nitrogen and cyanide. 

BioCord testing shows that the system can achieve over 99% ammonia reduction in synthetic wastewater concentrations as high as 750 mg/L. Since the system is modular, the system can be sized to meet the required ammonia target and quickly expanded if conditions change. 

Learn more about the Metal and Diamond Mining Effluent Regulations.

Learn more about BioCord Reactors for high strength wastewater treatment.

Contact us  to discuss your high strength wastewater treatment needs.

Back to Top

5 things you need to know about lagoon upgrades

DATE POSTED: December 22, 2020


Wastewater lagoons provide simple, reliable and relatively low-cost treatment for small and medium sized communities. In Canada and the US, there are nearly 10,000 municipal lagoon systems and many more when industrial, agricultural and commercial lagoon systems are included. 

But eventually a community needs to improve the treatment capacity and performance of its lagoon system to accommodate growth, meet more stringent regulatory requirements, or both. While there are many options for technologies that can likely achieve the upgrade objectives, there are several important aspects to consider to ensure that the system aligns well with the current operational process at a price that the community can afford – from capital and operational perspectives. 

1) Sidestream or in-situ technologies?

Moving-bed and submerged-bed systems typically add tanks or in-ground cells to accommodate the new treatment process. Not only does this add to the plant footprint, it also requires additional equipment such as tanks, pipes, pumps and blowers, which can substantially increase capital costs. In-situ systems can be installed directly into the lagoon to enhance treatment capacity without expanding footprint or adding a large amount of supporting equipment. 

2) Energy demand

Blowers can provide lots of air quickly, but the equipment is costly and has high energy demands. Some systems such as MBBR also rely on coarse bubbles from blowers to circulate the carrier media and keep it in suspension, in addition to supplying air to the microbial population. But larger bubbles are also less efficient at transferring oxygen to microbes – much of the air simply bubbles up and out of the process tank. Instead, consider a system that uses low-energy compressors and micro-bubble aeration for significantly higher oxygen transfer and lower, more efficient energy usage. 

3)Ease of operation 

One of the big advantages of wastewater lagoons is that they require little operator attention compared to more advanced mechanical treatment plants. In-situ systems can also share this advantage since they align well with the way wastewater lagoons are typically managed and don’t add complexity or additional processes to manage. 

4) Capital and long-term operating costs

Tanks, media beds, blowers and other equipment can all add capital and operating costs to a lagoon upgrade. Alternatively, in-situ systems use the existing lagoon cell, which can reduce capital costs by as much as 50%. Energy demand for in-situ systems can also be up to 50% lower by eliminating the need to pump wastewater to sidestream process and replacing blowers with low-energy compressors

Installing Bishop BioCord Reactors

5) Customizability 

Like any wastewater system, lagoons can experience variable loading, changing flows, upset and more. Upgrade technologies should be easily adaptable to respond to short- and long-term operating conditions, including anticipated changes to population and regulatory requirements. To achieve this, consider modular systems that can be brought online as needed or easily expanded to accommodate the needs of the community or business. 

BioCord Reactors check all the boxes

BioCord™ Reactors biological nutrient removal gives lagoon operators a simple and efficient way to dramatically increase capacity and performance of a wastewater lagoon or conventional activated sludge plant without expanding footprint. This low-energy, self-regulating process is ideal to help a plant achieve up to 99% ammonia reduction in difficult treatment conditions such as during cold weather or when experiencing high-strength or variable loading. The fixed-film, modular process is like a condominium for bacteria on which preferred, naturally occurring bacteria can thrive. BioCord reactors offer a flexible, modular design that can be customized to fit virtually any secondary treatment process and handle anticipated flow and loading parameters. 

Learn more about BioCord Reactors for lagoon upgrades. 

Contact us to discuss your wastewater treatment plant upgrade. 

Back to Top

Learn how BioCord and baffle curtains are enhancing performance at Limoges WWTF

DATE POSTED: October 6, 2020


Flow of WW through baffle curtains and BioCord Reactors at Limoges WWTF

Baffle curtains now surround two cells of BioCord™ Reactors that were installed as part of an upgrade for the Limoges WWTF in The Nation Municipality. The baffle curtains are an important component to maximize contact between the raw wastewater in the lagoon cells and the BioCord biofilm that breaks down the ammonia.

The baffle curtains achieve this by forming a raceway that directs the flow of wastewater through a series of 180 degree turns. This arrangement not only provides the most intensive arrangement for the 30 BioCord Reactors that make up each cell, but also a compact footprint. The two cells will operate in parallel with the incoming flow spilt between them. Each cell is designed to reduce influent ammonia from 30 mg/L to 1 mg/L in the summer and 5 mg/L in the winter.

Treatment lagoons typically struggle to achieve ammonia removal in the winter months, when cold temperatures reduce the population and activity of nitrifying bacteria. The BioCord system, along with other upgrades to the facility, will enable the Limoges WWTF to improve cold-weather performance and alter its operation from intermittent to continuous discharge. These process changes will also provide a dramatic increase to its treatment capacity, increasing it from 1,500 m3/day to 3,500 m3/day.

Limoges BioCord Installation
BioCord Reactors shown during installation. Once the BioCord Reactors were set in place and connected to the aeration system, the baffle curtains were raised into place to create the raceway.

As a result of this $10 million project, which also includes screening, grit removal, disk filtration and UV disinfection the Nation Municipality can extend the life of its wastewater lagoon system and avoid the need to replace it with a costly mechanical treatment plant.

BioCord Reactors are a made-in-Canada solution that is tested and proven to provide low-energy, self-regulating nutrient removal throughout the wide range of seasonal operating conditions that a plant experiences. The easy-to-operate system aligns well with the way wastewater lagoons are typically managed. With an optimized BioCord system, wastewater lagoons can accept greater nutrient loading, decrease retention times and improve effluent quality—especially in cold-weather conditions.

Watch our webinar series or visit our website to learn more about Bishop BioCord Reactors for enhancing cold weather performance in municipal and industrial wastewater lagoons and conventional activated sludge systems.

Contact us to discuss a BioCord system to achieve year-round enhanced ammonia removal in your wastewater lagoon or CAS plant.  

Back to Top